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• Spatiotemporal (2012–2016) carbon
emissions in two mega-urban regions are
modeled.

• Urban forms from LCZ maps, NTL images,
and a panel data model are used.

• The results show high accuracy (R2 =
0.98) and better reveal intra-urban varia-
tions.

• Urban compaction and natural landscapes
are found to relate to low emissions.

• Scattered low-rise buildings are associated
with increased carbon emissions.
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Spatiotemporal monitoring of urban CO2 emissions is crucial for developing strategies and actions to mitigate climate
change. However, most spatiotemporal inventories do not adopt urban form data and have a coarse resolution of over
1 km, which limits their implications in intra-city planning. This study aims to model the spatiotemporal carbon emis-
sions of the two largest mega-urban regions in China, the Yangtze River Delta and the Pearl River Delta, using urban
form data from the Local Climate Zone scheme and landscape metrics, nighttime light images, and a year-fixed effects
model at a fine resolution from 2012 to 2016. The panel data model has an R2 value of 0.98. This study identifies an
overall fall in carbon emissions in both regions since 2012 and a slight elevation of emissions from 2015 to 2016. In
addition, urban compaction and integrated natural landscapes are found to be related to low emissions, whereas
scattered low-rise buildings are associated with rising carbon emissions. Furthermore, this study more accurately ex-
tracts urban areas and can more clearly identify intra-urban variations in carbon emissions than other datasets. The
open data supported methodology, regression models, and results can provide accurate and quantifiable evidence at
the community level for achieving a carbon-neutral built environment.
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1. Introduction

Climate change has become an important challenge for global sustain-
able development. As the top carbon producer in the world, China has
been deeply involved in global efforts to mitigate climate change. In
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2020, China pledged to peak carbon emissions by 2030 and achieve carbon
neutrality by 2060 (Xinhua., 2020), which is the first carbon neutrality
promise from developing countries. Cities account for >70 % of total car-
bon dioxide (CO2) emissions (IEA. World Energy Outlook, 2021). Hence,
they are the principal causes of climate change and the major grounds for
achieving carbon neutrality.

Spatiotemporal monitoring of CO2 emissions in urban areas is crucial for
understanding the dynamic patterns and drivers of the carbon cycle and is the
foundation for devising strategies and actions to mitigate climate change
(Rong et al., 2020; Jincai Zhao et al., 2019). A reliable fine-resolution CO2

emission inventory will also be fed into the baseline scenarios for future car-
bon estimations for carbon peak and neutrality goals. A group of scientists
working on climate change issues has further appealed to prioritize high-
quality and fine-resolution emission inventories and to understand the inter-
actions between cities and climate for climate change mitigation (Bai et al.,
2018). Therefore, it is imperative to conduct an intensive examination of
the spatiotemporal heterogeneity of urban CO2 emissions in China. In partic-
ular, the Pearl River Delta (PRD) and the Yangtze River Delta (YRD) are the
two largest urban agglomerations in China, with approximately 300 million
residents and accounting for about 20 % of the country's carbon emissions
(Shan et al., 2022). Understanding the carbon emissions of these two mega-
urban regions is critical for strategic carbon emission reduction at both na-
tional and international scales. Thus, this study focuses on the spatiotemporal
CO2 emissions of the YRD and PRD regions.

In order to assess carbon emissions and facilitate practical mitigation
strategies, diversemethodologies have been developed tomodel spatiotem-
poral variations in carbon emissions. The bottom-up approach provides the
most accurate estimations from emission sources (Gurney et al., 2009;
Wang et al., 2014a). Although securing the most precise estimation from
emission sources, bottom-up approaches generally have limited applica-
tions in spatiotemporal analysis owing to the lack of detailed data about
emission sources, energy consumption, geographical locations, etc. More-
over, inventories from bottom-up methods often have a limited time span
and are difficult to perform in multi-temporal analyses.

The top-downmethod distributes the emissions from a large spatial unit
to the required grid based on certain proxy data (Doll et al., 2000). Popula-
tion and nighttime light (NTL) satellite images are the key proxy data for
predicting carbon emissions in top-down models because of their proper
representation of human activities, large spatial coverage, and frequent
temporal resolution (Doll et al., 2000; Ghosh et al., 2010; Ou et al.,
2015b). In particular, NTL data can reflect the socioeconomic situations
on the Earth's surface at high spatiotemporal resolution during nighttime
(Elvidge et al., 1997; Small et al., 2005), thereby offering continuous, fre-
quent, consistent monitoring of energy activities and carbon emissions.
However, these two datasets have some notable limitations. Population
data can reflect human settlement, but they often have a coarse spatial res-
olution from demographical data and are insufficient to reflect energy ac-
tivities in non-residential areas. NTL data may underestimate energy
activities in non-lit areas such as offices, industries, power plants, and
road networks. Therefore, a comprehensive proxy dataset covering various
urban structures and land cover types is necessary for a more accurate dem-
onstration of the spatial patterns of carbon emissions.

Urban development and urban forms are the key factors affecting the
distributions and magnitude of carbon emissions (Li et al., 2018; Liu
et al., 2016; Wang et al., 2014b; Xia et al., 2017). The effect of urban land-
scape on the transmission and diffusion of air pollutants can be more pro-
found in high-density urban areas (Yuan et al., 2014). However, urban
forms, specifically urbanmorphology and land use/land cover information,
are rarely used as proxy data for predicting carbon emissions owing to data
availability (Cai et al., 2021). Neglecting urban form in modeling carbon
emissions may influence the accuracy of the model and lead to an incom-
plete understanding of the impact of urban form for further planning
strategies.

In addition, intra-city planning strategies are substantial for the climate
change mitigation action plan (Penazzi et al., 2019). Cities have proposed
their action plan at the city level to facilitate carbon emission mitigation
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strategies and develop low-carbon cities (Khanna et al., 2014). However,
the spatial resolution of previous top-down inventories in China was usu-
ally >1 km. (Cai et al., 2018a; Li et al., 2017), which is still insufficient to
characterize the heterogeneity of carbon emissions within cities and im-
pedes further application in intra-city planning. Inventories with finer spa-
tial resolution are essential for a more precise spatial distribution and more
specific actions at the district and community levels.

Moreover, ordinary least squares (OLS) models (Meng et al., 2014; Ou
et al., 2015b; Zhao et al., 2018; Zhao et al., 2020) have been frequently
used in the top-downmethod to predict carbon emissions fromNTL images.
Considering that the relationship between the predictors and carbon emis-
sions can vary over space and time, regular OLS regression models may be
biased because of this type of heterogeneity. Adding time or space fixed ef-
fects tomodels can be a highly efficient way to address these invariant char-
acteristics and assess the net effect of the predictors on the response
variable. Models with city/province fixed effects have previously been
used to estimate CO2 emissions (Cui et al., 2019; Shi et al., 2016; Zhang
et al., 2021). The time-fixed effects that are necessary for controlling the
time-specific characteristics of carbon emissions in different years should
also be considered in the regression model.

In order to address the limitations of previous studies, the objectives of
this study are:

i. To develop a time-fixed effects model to estimate spatiotemporal car-
bon emissions at a fine resolution using open urban form data

ii. To understand the impact of urban form on carbon emissions of the
PRD and YRD regions

iii. To predict carbon emissions of both selected regions during the period
2012–2016

iv. To analyze the spatiotemporal variations of carbon emissions of the two
regions

2. Material and methods

2.1. Study area

With approximately 20 % of China's population and 30 % of its gross do-
mestic product (GDP), the PRD and YRD regions are the two fastest growing
and leading mega-urban regions in China (Fig. 1). The PRD region is located
on the southeast coast of China, covering a total area of 56,000 km2 and
consisting of nine megacities in Guangdong Province and two special admin-
istrative regions, namely Hong Kong and Macao. As one of the priority eco-
nomic development zones of China, the PRD region is poised to become the
largest bay area in the world with a vital role in facilitating low-carbon and
sustainable development (Zhou et al., 2018). In July 2010, the National
Development and Reform Commission of China released the Notice on the
National Pilot Project of Low-Carbon Provinces and Cities, and the PRD re-
gion was selected as a pilot area for the national program (National
Development and ReformCommission of China, 2010). The Guangdong gov-
ernment also regards green and low-carbon development in the region as a
priority to achieve sustainable development and mitigate climate change.

The YRD region comprises the Shanghai municipality, as well as cities
in Jiangsu, Zhejiang, and Anhui Provinces. It has become one of the largest
megalopolises in the world because of the dramatic and rapid urbanization
in this region. In 2019, the resident population of the YRD region exceeded
200 million, accounting for 16.2 % of the total population of the country
(State Council of China, 2019). In order to meet the huge energy consump-
tion demand in the region, the energy system in the YRD region provides a
strong guarantee of rapid economic and social development. A national de-
velopment strategy, YRD Urban Agglomeration Development Plan was re-
leased in 2018 to address the low-carbon development of the region and
to enhance the efficiency of urban land use in the region. Thus, to achieve
sustainable development of the two mega-urban regions and mitigate
global climate change, it is urgent to undertake carbon emissionmonitoring
and spatial optimization strategies to transform the two regions into low-
carbon, clean, and efficient urban agglomerations.



Fig. 1. Locations of the study areas (a), cities in the Yangtze River Delta region(b), and cities in the Pearl River Delta region (c).
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2.2. Data

2.2.1. Statistical data
Carbon emissions from fossil fuel consumption were calculated for all

30 cities (11 cities in the PRD region and 19 cities in the YRD region).
The latest emission factors were retrieved from Liu et al. (2015). Data on
energy consumption were acquired from the energy balance table of the
statistical yearbooks of cities and the country. Socioeconomic information
including GDP and population data for each city, was also retrieved from
the city statistical yearbooks.

2.2.2. Satellite images
The NPP-VIIRS NTL data has been emerging as a new source of NTL im-

ages with a fine spatial grid and free of saturation (Elvidge et al., 2017). It
provides the latest nightlight information since 2012 and has a spatial res-
olution of 500m×500m higher than the DMSP-OLS data (1 km×1 km).
Furthermore, comparative studies demonstrate that the NTL data from the
NPP-VIIRS can more accurately represent energy consumption as well as
carbon emissions than the DMSP-OLS (Chen et al., 2020; Elvidge et al.,
2013; Ou et al., 2015a). Therefore, NPP-VIIRS is more capable of predicting
carbon emissions and shows promising predictive results.

This study chose VIIRS Stray Light Corrected Nighttime Day/Night
Band Composites as the primary proxy data for predicting spatiotemporal
carbon emissions (Mills et al., 2013). For each year, the final output of
3

the NTL image was a collection of the mean DN value of the pixels among
all monthly products within the year.

As the NPP-VIIRS data have been available since 2012, the study period
of this studywas from 2012 to 2016 to include themost complete time span
of theNTL data and statistical data. Furthermore, as the carbon emissions of
megacities in China have been relatively stable since 2012 (Shan et al.,
2017), the results from this study period can still provide insight into the
current and future carbon emission characteristics of such mega-urban
regions.

2.2.3. Local climate zone (LCZ) maps
Urban forms can be characterized by urban morphology and land use/

land cover (Ren et al., 2017). The LCZ scheme proposed by Stewart et al.
(2014), provides a standardized way to characterize global cities based on
their morphology and function and is therefore suitable for representing
urban forms. Compared with previous land use/land cover products with
a single urban class, it provides a detailed investigation of the built environ-
ments and characterized the land surface structure and cover into 10 built
types (LCZ 1–10) and seven natural types (LCZ A-G) (Fig. 2).

The scheme has recently gained extensive applications in urban studies
because it provides a detailed description of urban structure, uses publicly
available data and software, and serves as an internationally recognized
standard for the uniform classification of cities across the globe. In particu-
lar, the LCZ scheme has demonstrated strong capability in characterizing



Fig. 2. LCZ map of the PRD and YRD regions in 2016.
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the spatial distribution of air pollutants (Shi et al., 2019). Accounting for
urban morphology and land cover through LCZ classification can provide
a new opportunity to model the spatial variation of carbon emissions.

The LCZ maps with 100 m resolution of the two regions from 2012 to
2016 were retrieved from previous studies (Cai et al., 2018b; Chung
et al., 2021; Wang et al., 2019). They were produced based on various re-
mote sensing products such as Landsat 8, a digital elevation model,
Sentinel-1, Sentinel-2, and a random forest classifier. The accuracy assess-
ment showed that their overall accuracy was approximately 73 % (Cai
et al., 2018b; Chung et al., 2021; Wang et al., 2019).

In order to further link the LCZmapswith land use information for a ho-
listic understanding of the urban structure, this study calculated the per-
centage of different Essential Urban Land Use (EULUC) developed by
Gong et al. (2020) within each LCZ. The EULUC depicts land use informa-
tion for China in 2018; therefore, we used the LCZ maps in 2016, which
is the closest in time to link the land use information.

2.3. Research steps

2.3.1. City-level carbon emissions estimation
Emissions from fossil fuels were calculated based on fossil fuel con-

sumption information and the corresponding emission factors using the
IPCC approach (Eq. (1)) (IPCC, 2006). In this study, the latest emission fac-
tors (Liu et al., 2015) were adopted. Annual fossil fuel consumption data
were obtained from the energy balance table of the statistical yearbook of
each city.

CEi ¼ ADi � EFi (1)
4

where i represents fossil fuel types summarized by the National Bureau of
Statistics of China (2016). AD represents fossil fuel consumption and EF
(unit: gCO2/MJ) is the emission factor that converts the energy consump-
tion to carbon emissions. The city-level carbon emissions can be calculated
by aggregating the emissions from all fossil fuel types using (Eq. (2)).

CE ¼ ∑
n

i¼1
CEi (2)

2.3.2. Urban form factors
According to the LCZ maps, the natural LCZ classes (LCZ A-G) were in-

tegrated into one class as the natural land cover. To focus on the impact of
urban compaction, LCZ 1–6 were reclassified into two categories: compact
urban forms (LCZ 1–3), and open urban forms (LCZ4–6). Therefore, 13 LCZ
classes (12 built classes and one natural class) were analyzed in this study.

The urban form of the study areawas quantified using a series ofmetrics
that can offer detailed and comprehensive spatial patterns of different land
use/landscape types at both class and landscape levels based on LCZ maps
(Haines-Young and Chopping, 1996; Neel et al., 2004). The class-level land-
scape metrics can describe spatial patterns of classes within a predefined
land lot area, including the percentage of landscape types (PLAND), Largest
Patch Index (LPI), Aggregation Index (AI) (He et al., 2000), and
Connectance Index (CONNECT) (Tischendorf and Fahrig, 2000).
Landscape-level metrics can provide information on the diversity of land
cover and land use types, including the contagion index (CONTAG) and
Shannon's Evenness Index (SEI). The definitions and computation methods
of these metrics are summarized in Table 1. There were 52 class-level



Table 1
Landscape metrics adopted in this study.

Landscape
metrics

Definition Equationa

PLAND Percentage of the landscape of class i PLANDi ¼ ∑n
j¼1aij
A 100ð Þ

LPI Percentage of the largest patch of the landscape of class i LPIi ¼ max n
j¼1 aijð Þ
A 100ð Þ

AI Percentage of like adjacencies to the maximum potential like adjacencies of the corresponding class i AIi ¼ gii
max !gii

h i
100ð Þ

CONNECT Percentage of functional joins between patches of class i to the total number of potential joins between all
Patches of the class

CONNECTi ¼ ∑n
j≠kcijk

ni ni � 1ð Þ
2

� �
100ð Þ

CONTAG Observed contagion to the maximum potential contagion for the provided classes

CONTAG ¼ 1þ
∑m
i¼0∑

m
q¼1 Pi∗

giq
∑m
q¼1

giq

� �
2 ln mð Þ ∗ ln Pi∗

giq
∑m
q¼1giq

� �h i
2
664

3
775 100ð Þ

SHEI Area composition and richness calculated based on the percentage of each class and the number of classes SHEI ¼ � ∑m
i¼1 PLANDi∗ ln PLANDið Þ

ln m

a i and q are the classes of the landscape; j and k represent the patches in the landscape;m is the total number of classeswithin the landscape; n is the total number of patches
in the landscape; a is the area of the patch; A is the area of the landscape; g refers to the number of adjacencies between pixels of patch types using the double-count method;
and c refers to the functional joins (0 = not joined, 1 = joined).

M. Cai et al. Science of the Total Environment 857 (2023) 159612
landscapemetrics (13 LCZ classes for each class-level landscapemetric) and
two landscape-level metrics urban form indicators that were deployed as
urban form factors. The 54 metrics were calculated at a 500 m grid level
on the Fragstats platform (version 4.2.1) (McGarigal et al., 2012).

Furthermore, to focus on carbon emissions in urban areas, this study ex-
cluded grids where the natural landscape is completely dominant, that is,
grids where the LPI of the natural LCZ is 100 %.

2.3.3. Statistical analysis
The NTL data and 54 urban form factors were regarded as potential in-

dependent variables whereas the city-level carbon emissions were the de-
pendent variable. Panel data are at the city-year level. The statistical
model assumes a linear relationship between the predictors and CO2 emis-
sions at the city level, and such a relationship can also be applicable at the
grid level (500 × 500 m2).

In order to eliminate redundancies of the predictors, we performed
Least Absolute Shrinkage and Selection Operator (LASSO) regression to de-
termine the optimal subset of predictor variables fromall predictors. LASSO
variable selection is a supervised algorithm that screens variables that are
closely associated with the response variables from a vast number of candi-
date predictors (Tibshirani, 1996) and is therefore suitable for the relatively
large prediction datasets in this study. We further refined the selected var-
iables from the LASSO regression according to the rule of Variance Inflation
Factor (VIF) < 5 to include only non-collinear variables.

The relationship between city-level carbon emissions and the selected
predictors can be established using multiple linear regression (Eq. (3)):

CEij ¼ α1 Vαr1 þ α2 Vαr2 þ . . .þ αn Vαrn þ γþ εij (3)

where CEij is the city-level carbon emission for city i in year j (2012–2016).
α1…, αn are the estimated coefficients of the predictors Vαr1 …,Vαrn. γ is
the intercept and εij is the residual of the model.

Further to the basicmodelmentioned above, this study considered a lin-
ear regression model with time-fixed effects to capture the possible time
trends and involve temporal heterogeneity for a more accurate and stable
prediction of carbon emissions. The relationship between the predictors
and city-level carbon emissions was established, accounting for time-fixed
effects (Eq. (4)):

CEij ¼ CEij ¼ α1 Vαr1 þ α2 Vαr2 þ . . .þ αn Vαrn þ γþ βj þ εij (4)

where β denotes the year-specific adjustment to intercept γ in year j. The
modelwas further validated using the F-test andHausman test to decide be-
tween fixed or random effects. Once the relationship was proven by the
tests, it was valid to use the selected predictors as proxies to estimate CO2

emissions via a top-down model. This statistical relationship was then
5

applied to all predictors at the grid level (500 m) for each year to obtain
the spatiotemporal carbon emissions.

In addition, the coefficient of each variable was standardized to evalu-
ate the effect of each predictor (Eq. (5)).

α∗ ¼ SVar
SCE

� α (5)

where SVar and SCE represent the standard deviations of the predictor and
the carbon emissions, respectively, and α is the coefficient of the corre-
sponding predictor in (Eq. (4)).

Furthermore, the sum of the projected carbon emissions on all grid cells
within the administrative boundary of the city can differ from the values in
Section 2.3.1. To be consistent with the city-level carbon emissions in the
section, we further refined the predicted carbon emissions for each pixel
(Eq. (6)) for each year to adjust the gridded CO2 emissions (Cui et al.,
2019):

CEp ¼ PEp � CEi

PEi
(6)

where CEp is the adjusted carbon emission value for pixel p, PE is the pre-
dicted carbon emission based on (Eq. (4)), CEi denotes the city-level carbon
emission for city i from Section 2.3.1, and PEi is the sum of predictive car-
bon emission values within city i.

3. Results

3.1. City-level carbon emissions

Five representative metropolises in the two regions, Shanghai, Guang-
zhou, Hangzhou, Shenzhen, and Hong Kong, were selected to present
their city-level carbon emission (Fig. 3). Shanghai, the most populous and
economically prosperous city in China, has the highest annual carbon emis-
sions of approximately 200 Mt. The year 2013 was the turning point for
carbon emissions in Shanghai, when carbon emissions started to decrease.
Guangzhou is the capital and largest city in Guangdong Province. A signif-
icant drop in emissions has also been observed in Guangzhou since 2013,
with emissions down by half to approximately 60 Mt. The emissions in
Hangzhou, the capital city of Zhejiang province, peaked in 2014 during
the study period. Shenzhen is the first special economic zone in China
and is recognized as one of the fastest-growing megacities in the world.
From 2012 to 2015, the total emissions in Shenzhen showed a stable pat-
tern, even under high-speed urban development, which may be attributed
to its energy transformation into innovation-based industries. Similar to
Shenzhen, the carbon emissions in Hong Kong also showed fewer fluctua-
tions from 2012 to 2016.



Fig. 3. City-level carbon emissions of the five metropolises in the two regions;
(a) total emissions, (b) emissions per capita, (c) emissions per unit of GDP.

Table 2
Results of the panel data model with year-fixed effects.

Predictors Unstandardized
coefficients

Standardized coefficients

NTL 5.03 × 10–4⁎⁎⁎ 1.17⁎⁎
PLAND_Compact LCZ −3.38⁎⁎⁎ −0.31⁎⁎⁎
PLAND_LCZ 9 1.76⁎ 0.07*
LPI_LCZ 9 22.19⁎⁎⁎ 0.08***
LPI_LCZ 10 5.59⁎⁎⁎ 0.12***
LPI_LCZ 2 243.61⁎⁎⁎ 0.13***
LPI_LCZ 7 −103.07⁎⁎ −0.05**
CONN_LCZ 10 59.00⁎⁎⁎ 0.17***
AI_natural LCZ −1.09⁎ −0.13*
AI_LCZ 2 −0.55⁎⁎ −0.11**
AI_LCZ 3 0.63⁎⁎⁎ 0.12***
AI_LCZ 6 −0.51⁎⁎ −0.10**
R2 = 0.986 Adjusted R2 = 0.98
F Statistic 192.39⁎⁎⁎ (df = 28; 77)
Note: ⁎p < 0.1; ⁎⁎p < 0.05; ⁎⁎⁎p < 0.01
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Carbon emissions per capita (Fig. 3(b)) are relatively low in Shenzhen
and Hong Kong and are below the national average of 7.1 tons (The
World Bank, 2020). Shenzhen had the lowest emissions per person,
which remained stable during the study period. The per capita carbon emis-
sions of Hong Kong were also relatively low, peaking in 2014. Guangzhou
and Hangzhou had the largest emissions per person, at approximately
12 t in 2012 and 2013. The per capita emissions of Guangzhou dropped
by 30% in 2014, whereas Hangzhou's per capita emissions began to decline
in 2014. The emissions in Shanghai were close to 8 t per person during the
study period and began to decrease in 2013.

Shenzhen and Hong Kong account for a large proportion of the modern
service and high-tech manufacturing industries. Therefore, these two cities
had the smallest carbon emissions per unit of GDP (Fig. 3(c)). Although the
total and per capita emissions of Hangzhou did not drop much, the carbon
emissions per unit of GDP showed a significant decreasing trend from 2012
to 2016. Shanghai and Guangzhou had the largest amount of carbon emis-
sions per unit of GDP and alsowitnessed a large decline during the study pe-
riod, indicating an increase in carbon efficiency with economic growth, as
well as the progress of the continuous adjustment and optimization of the
energy structure of these cities (Pei et al., 2018).
6

3.2. Panel data analysis

Among all potential predictors, 23 with VIF <5 remained in the LASSO
regression model (see Table S1in Supplementary Material). In particular,
NTL data indicated a strong positive correlation with carbon emissions. Ac-
cording to the correlation analysis, NTL alone explained 88.36% (r=0.94)
of the variance in carbon emissions.

The selected predictors were applied in several candidate regression
models, including the OLS model, random effect model, year-fixed effects
model, and two-way fixed effects model (see Supporting Information).
The year-fixed effects model yielded the largest adjusted R2 (0.98) and F-
value, and a significant Hausman Test (p-value < 0.05), thus verifying the
applicability of selecting the year-fixed effects model to interpret and pre-
dict carbon emissions for the two regions.

Table 2 shows that 11 predictors are statistically significant (p-value <
0.05) in the year-fixed effects panel data model. The percentage of compact
urban forms is found to be the most influential with a standardized coeffi-
cient of−0.312 and is negatively associated with carbon emissions. More-
over, the LPI of LCZ 7, the aggregation of natural LCZ, LCZ 2, and LCZ 6
demonstrate negative impacts on carbon emissions.

The CONNECT of LCZ 10 showed the largest effect on increasing carbon
emissions (standardized coefficient=0.17). The percentage and LPI of LCZ
9, LPI of LCZ 2 and LCZ 10, and aggregation of LCZ 3 are also inclined to
raise carbon emissions.

Table S2 shows the intercepts of the model for each year. It can be ob-
served that 2012 has the largest year-specific constant, indicating that the
year has the highest carbon emissions in all cities in both regions over the
entire study period. Overall, the carbon emissions in the study area have
changed significantly since 2012. The constants continually decreased
from 2012 to 2015, and carbon emissions showed a downward trend dur-
ing this period. The constant for 2016 grew slightly, demonstrating an over-
all lift of carbon emissions of the cities in the two regions in 2016.

3.3. Spatiotemporal carbon emissions

3.3.1. Overall analysis
The spatiotemporal carbon emissions of the two regions based on the

predictive panel data model are shown in Fig. 4. In the PRD region,
among all years, high emissions (>10 Gg) are generally concentrated in
highly urbanized cities, including Hong Kong, Guangzhou, Shenzhen, Fo-
shan, Zhongshan, and Dongguan, owing to the dense urban population
and energy activities in these cities. The emissions displayed a more
scattered pattern in less-populated cities such as Zhaoqing, Jiangmen, and
Zhuhai. High emissions are usually surrounded bymedium levels of carbon
emissions around the urban fringe, and the emissions gradually decrease
from the city cores to rural areas. Moreover, there is no clear boundary
for carbon emissions among major cities in the PRD region, demonstrating



Fig. 4. Spatiotemporal variations of carbon emissions of the PRD region (a–e) and YRD region (f–j).
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the formation of a growing urban agglomeration in the region. Larger spa-
tial coverage of high carbon emissions wasmostly found from2013 to 2016
than that in 2012, which may be related to the fact that the total emissions
in the region peaked in 2014 (Zhou et al., 2018).

In the YRD region, high emissions were mostly located in the urban
cores of Shanghai, Hangzhou, Suzhou, and Wuxi. A notable agglomeration
of high emissions was identified among the city group of Suzhou-Wuxi-
Changzhou. Other hotspots of high emissions were detected in the urban
centers of Nanjing, Ningbo, and Jiaxing. The carbon emission in the south-
ern part of the YRD region presented a highly decentralized distribution
pattern, and the concentration of carbon emissions in the northern part
was significantly greater than that in the southern part. Low emissions
(<2 Gg) were most distributed on the fringes of urban centers. The inter-
annual spatial variations are relatively insignificant since the growth rate
of carbon emissions peaked in 2007 (Tang et al., 2019).

According to the change from 2012 to 2016 (Fig. S1), significant in-
creases in carbon emissions were concentrated in the major urban cores
in the two regions, whereas the reduction of emissions is in a more
decentralized manner. There is an overall increase in the magnitude of car-
bon emissions inmost urban areas of the two regions, which can result from
the urban expansion process of the cities during the study period. In the
PRD region, the reduction in carbon emissions was scattered in Guangzhou,
Foshan, Dongguan, Shenzhen, and Zhongshan. In the YRD region, the de-
cline was primarily identified in the urban areas of Shanghai, Changzhou,
Ningbo, andHangzhou, aswell as in the suburbs of Shaoxing andWenzhou.

3.3.2. Year-on-year changes in CO2 emissions
Fig. 5 reveals the yearly changes in gridded CO2 emissions in the two

regions. From 2012 to 2013, the PRD region witnessed significantly in-
creased emissions in most cities, which is likely related to the continu-
ous urban expansion during this period (Fig. 5(a)). Dispersive declines
were also observed in Guangzhou and Foshan. Similar to the PRD re-
gion, there was a large increase in carbon emissions in the YRD region
from 2012 to 2013. Some scattered decreases were observed in Nanjing,
Suzhou, and Hangzhou.

Between 2013 and 2014, a large expansion of emission decrease has
been detected in the PRD region, covering most of the urban areas of
Dongguan, Guangzhou, Foshan, Zhongshan, Zhaoqing, and Yunfu. Some
concentrated growth is located in Hong Kong and Shenzhen while some
scattered increases are in other cities in the region. Meanwhile, the YRD re-
gion is concurrent with a more mixed pattern of growth and decline in car-
bon emissions (Fig. 5(f)). Frequent blue pixels that represent declines are
distributed in the urban cores of the region, especially in Shanghai, Hang-
zhou, Ningbo, Nanjing, and Suzhou-Wuxi-Changzhou. The increases were
more often distributed in the urban fringes of the YRD region.

Between 2014 and 2015, the PRD region experienced a large decline in
emissions in most cities, especially Hong Kong, Shenzhen, Guangzhou,
Foshan, and Zhongshan (Fig. 5(c)). The decline hotspots shifted from the
southwest to the southeast of the region compared to the changes from
2013 to 2014. Some scattered increases were identified in Guangzhou,
Shenzhen, and Foshan. The YRD region also showed a prevailing decrease
in emissions, with some increases in Shanghai and Suzhou (Fig. 5(g)). The
spatial patterns showed fewer variations in the urban fringes of the two re-
gions during the study period.

Between 2015 and 2016, the PRD region exhibited a generally down-
ward pattern (large area covered with blue and yellow color in Fig. 5(d)),
whereas some mixed changes were identified in the Guangzhou-Foshan
area. Further declines in carbon emissions have been observed in the
major cities in the PRD region, including Guangzhou, Shenzhen, Foshan,
and Hong Kong. In contrast to the downward trend in the PRD region, the
YRD region has growing carbon emissions in the urban centers of most cit-
ies (Fig. 5(h)). Concentrated reductions in carbon emissions were also ob-
served in the urban centers of Shanghai.

In general, yearly changes in carbon emissions in the PRD region are
more uniform and show an overall decreasing pattern, demonstrating that
the region has achieved integrated and coordinated development.
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However, the year-on-year changes in the YRD region are more diverse
and mixed in different cities, indicating that coordinated development
has not yet been fully realized in the region, and the emission reduction
measures and effects are not consistent across cities.

4. Discussion

4.1. Influential urban form and planning implications

4.1.1. Urban compaction
Low-carbon strategies at both the community and city levels can be de-

vised based on the effects of landscape metrics (Section 3.2) and land use
information (Table S3 from LCZ maps). Urban compaction (LCZ1–3) has
the minimum standardized coefficient and is, therefore the most influential
urban form factor in decreasing carbon emissions. A compact urban layout
and planning can reduce travel distance, thus abating transport-related car-
bon emissions. Moreover, compact development may have more efficient
interactions among different zones (Yeh and Li, 2001; Yu et al., 2020)
and, therefore, can reduce energy consumption in different sectors.
Hence, this study recommends compact and centralized urban develop-
ment rather than decentralized distribution in the future urbanization pro-
cesses in the two regions. It is also imperative for urban planners and
decision-makers to accommodate sufficient public transportation facilities
and improve the accessibility of the road networks of the two regions. Nev-
ertheless, arbitrarily increasing the size of compact urban settlements can
increase anthropogenic carbon emissions and should therefore be consid-
ered carefully when developing compact settings with various heights
and functions.

Accordingly, panel data analysis can provide an in-depth and detailed
understanding of the impacts of different compact urban forms on carbon
emissions based on the effects of landscape metrics for LCZ 1–3. The land-
scape metrics of LCZ 1 yield insignificant results in this study. The LPI of
LCZ 2 (compact middle-rise buildings) can raise carbon emissions, whereas
the aggregation of LCZ 2 is related to low emissions. Compact middle-rise
buildings are common and crucial urban forms often with commercial
and residential functions in both regions (Table S3). The results of this
study offer insights into the design of essential urban forms where compact
mid-rise buildings should be clustered together. Meanwhile, the size of the
aggregated patch of LCZ 2 should be restricted to avert the dominance of
LCZ 2. Compact low-rise buildings (LCZ 3), which are primarily dense com-
mercial areas and urban villages, prefer relatively scattered layouts, based
on the panel datamodel. The concentrated pattern of LCZ 3 is likely related
to the high population density and increased energy consumption from
commuting and commercial activities.

4.1.2. Other urban forms
The aggregation of LCZ 6 (open low-rise) is also associated with lower

emissions. Open low-rise buildings often belong to large commercial or rec-
reational areas with high emissions from both the residential and business
sectors (Table S3). This finding provides evidence for the planning of villa
areas and resorts that they should be allocated in an aggregated manner
to reduce traffic-related emissions and inter-zone energy activities.

The panel data model also indicates that the total area and area of the
LPI of LCZ 9 (scattered low-rise buildings) are related to high emissions.
LCZ 9 is a typical residential building type in rural areas. Sparse building
settings can increase travel distances and lead to increased transport-
related emissions. Accordingly, this study suggests restricting the propor-
tion and size of scattered low-rise buildings to avoidmaking LCZ 9 the dom-
inant urban form of community to achieve low-carbon development.

Heavy industrial areas (LCZ 10) are often associated with high emis-
sions, because factories can generate pollutants during industrial processes.
The LPI and CONNECT of LCZ 10 can increase carbon emissions, providing
evidence and knowledge for planning industrial areas in the two regions. In
the process of energy transformation, the total area of industries does not
necessarily induce high emissions in either region; however, it is necessary
to control the area of the largest patches of factories and industrial facilities.



Fig. 5. Year-on-year change in carbon emissions from 2012 to 2016 in the PRD region (a–d) and YRD region (e–h).
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It is also necessary to reduce the connectivity of industrial areas by increas-
ing the distance between the different patches. Therefore, this study pro-
poses that when heavy industrial areas are the primary land use, they
should be distributed in a decentralized manner, with other land uses
spaced in between. The results of this study also encourage an increase in
the dominance of lightweight buildings (LCZ 7), which are typically manu-
factured and warehouse buildings located in rural areas (Table S3). When
LCZ 7 is the major land use type, it tends to indicate low urbanization
rates and building energy consumption.

Furthermore, the AI of the natural landscape (LCZ A-G) is related to
lower emissions, which indicates that the natural landscape should have
certain aggregation and dominance in land use planning at both the com-
munity and city levels.

4.2. Comparison with other datasets

The spatial distributions predicted in this study are compared with the
original NPP-VIIRS NTL images and the FFDAS version 2.2 dataset at a
10 km resolution (Asefi-Najafabady et al., 2014) to evaluate the perfor-
mance of the results. The FFDAS models the spatial distribution of global
carbon emissions from DMSP NTL data, population data, and power plant
emissions for the period 1997–2012. Hence, 2012was selected for compar-
ison and the results from this study were further aggregated to the same
spatial grid of the FFDAS to ensure consistency between the two datasets.
We calculated the difference between the two datasets by pixels (FFDAS
minus PRE).

For the identification of urban areas, the results from the present study
extract the largest urban areas compared to the NPP-VIIRS data and FFDAS,
not only in urban centers but also in suburbs and less-populated areas such
as the isolated points in Hangzhou, Nantong, and the southern PRD region.
This study adopted LCZ maps generated from multi-source satellite images
to extract urban areas, which can identify urban areaswith potential energy
activities during both day and night according to the spectral characteristics
of the earth's surface that are independent of diurnal variation. However,
NTL images can only identify lit areas during the nighttime; therefore, it
is likely to underestimate urban areas without human activities during
the nighttime. Therefore, this study can more accurately and comprehen-
sively extract urban areas than previous datasets that only adopted NTL
data as the primary proxy data by exploiting LCZ maps.

Moreover, compared to the original NPP-VIIRS images and the FFDAS
dataset, this study more clearly characterizes the intra-urban variations in
carbon emissions. The FFDAS has a coarse spatial resolution and is not
able to detect intra-urban variations in carbon emissions. The NTL data
have relatively uniform magnitudes of carbon emissions in urban centers,
whereas the results of this study show larger fluctuations in cities of these
two regions. Greater intra-urban variations can be more realistic because
the brightness of the light is not necessarily related to the intensity of en-
ergy activity, and buildings with similar brightness can have different en-
ergy consumption magnitudes; the LCZ maps contain information on
urban forms and functions that can assist in reflecting the heterogeneity
of energy activities.

The differences between FFDAS and the results of the current study are
shown in Fig. 6(d) and (h) by subtracting the results of this study with
FFDAS in the same 10 km spatial grid. The green pixels show the locations
where the FFDAS has larger values (>0.5 standard deviations), whereas the
brown color indicates that the value from this study is higher. Overall, the
differences between the two for the majority of the pixels are minor (<0.5
standard deviations). In the PRD region (Fig. 6(d)), large differences are
not frequent, and the results of this study have relatively larger values in
the western part of the region, which is relatively unprosperous. The
green pixels where the FFDAS is higher, are scattered in this region. For
the YRD region (Fig. 6(h)), this study has higher values in the north part
of the region, Jiaxing, and Huzhou. The green pixels are primarily located
in Shanghai and Suzhou, the two most prosperous cities in this region. In
summary, this study demonstrates high values of carbon emissions in rela-
tively less developed cities under rapid urbanization compared to FFDAS
10
data. This mismatch is in accordance with a previous finding that NTL
data have relatively poor performance in less developed than in developed
regions and can underestimate emissions in these regions (Doll et al.,
2000). Therefore, the comparison further highlights the necessity of
supplementing urban form information to improve the deficiencies of
NTL data in unprosperous areas when modeling carbon emissions.

Overall, the results from this study have the strengths ofmore proper ex-
traction of urban areas, the ability to characterize intra-urban variations in
carbon emissions, and more accurate prediction in less-developed areas.

4.3. Limitations and future work

This study has several limitations. First, the emission factors for each en-
ergy activity remain subject to large uncertainties. There are various
sources of emission factors, such as the IPCC on Climate Change (IPCC,
2006), and China's National Communication (Development and
Commission, 2012). We attempted to minimize this problem using local-
ized coefficients proposed by Zhu Liu et al. (2015). The emission factors
were revised according to independently evaluated activity data and two
comprehensive measurement datasets in China. There are also uncer-
tainties in proxy data that disaggregate carbon emissions. Although the
NPP-VIIRS has the finest spatial resolution among all the instruments on-
board the S-NPP satellite, it can have background noise (Elvidge et al.,
2017) and geolocation errors (Wang et al., 2017). In addition, the LCZ
maps have an overall accuracy of 73.2 % and have relatively poor perfor-
mance for classes such as LCZ 9, LCZ B, and LCZ C (Cai et al., 2018b;
Chung et al., 2021; Wang et al., 2019). Therefore, we propose combining
other high-quality urban form data with the LCZ data to minimize the
modeling error.

In the future, we plan to include other open urban datawith high spatio-
temporal resolution, such as human activity data from social media applica-
tions. In addition, the development stages of cities can influence the effects
of urban form on carbon emissions. Further studies will use larger data sam-
ples to account for the developmental stages in the modeling. Also, the im-
pact of urban development on carbon emissions may not be linear, which is
not reflected in the current linear models. We plan to adopt more advanced
models, such as neural networks or random forests (Hu et al., 2017; Huang
et al., 2018; Xu et al., 2018) that can incorporate nonlinear and complex re-
lationships in themodeling of carbon emissions, to achieve higher accuracy
than that of previousmodels. The spatiotemporal inventories created in this
study can serve as a baseline for future carbon emission projections to ex-
amine progress towards carbon neutrality. The inventories will be updated
annually to support carbon audit and mitigation strategies.

5. Conclusions

This study analyzed the effects of urban forms that were generated from
LCZ maps and landscape metrics on carbon emissions in the PRD and YRD
regions. Moreover, carbon emissions at 500m resolution of the two regions
from 2012 to 2016 were predicted from NTL data and urban forms using
panel data regression.

The following conclusions can be drawn from this study: 1. Both NTL
data and urban form factors are found to be significantly associated with
carbon emissions of the two regions in the year-specific panel data model
(R2 = 0.98). 2. The panel data model indicates that there is an overall de-
crease in the carbon emissions of the two regions since 2012 and a slight el-
evation from 2015 to 2016. 3. Urban compaction and natural landscape are
found to relate to low emissions, whereas scattered low-rise buildings are
associated with rising carbon emissions. 4. There are notable spatial
variations in carbon emissions, although city-level carbon emissions are
generally stable for most cities in both regions during the study period. In
particular, the YRD region has larger emission hotspot expansions than
the PRD region. 5. Compared to the original NTL data and the FFDAS
data, the results from this study extracted urban areas more accurately
and can more clearly identify the intra-urban variations in carbon
emissions.



Fig. 6. Comparison with other data sources, (a–e) for the YRD region, and (f–h) for the PRD region.
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The results offer several important policy implications for urbanization
progress towards carbon neutrality in the twomega-urban regions. First, al-
though a compact urban form is generally beneficial for reducing carbon
emissions, it is also necessary to investigate the effects of different building
heights and functions in a compact urban environment. Second, compact
middle-rise buildings should be clustered on a relatively small scale within
the community. Third, compact low-rise buildings favor a more scattered
layout. In addition, open low-rise buildings should exhibit aggregated pat-
terns. Furthermore, this study suggests limiting the size, proportion, and
dominance of scattered, low-rise buildings. In addition, industrial areas
should be distributed in a decentralized manner, and the distance between
patches should be increased. In addition, there should be a greater concen-
tration of natural landscaping and predominantly lightweight low-rise
buildings.

This study is novel in several aspects. First, this study is thefirst to incor-
porate detailed and comprehensive urban form factors from LCZ maps in
carbon emission modeling, providing an accurate estimation of the spatial
variations in carbon emissions. Second, carbon emissions are modeled
using a panel data model with time-fixed effects rather than OLS models,
accounting for the temporal dimensions of carbon emissions. Third, the re-
search framework only adopted open data and utilized an internationally
accepted scheme of urban form, thereby demonstrating the effectiveness
and potential of applying the method to other cities and regions worldwide
and identifying opportunities for global efforts to reduce carbon emissions.
Therefore, urban planners, architects, and decision-makers can refer to the
developed methodology, regression models, and spatiotemporal invento-
ries to jointly foster a carbon-neutral built environment.
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